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Outline

• Advanced Baseline Sounder (ABS) background
• ABS trade space analysis
• Conclusion
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Atmospheric Sounding Review

• Extract vertical profiles of atmospheric temperature and 
water vapor from remotely-sensed measurements

– Initialization of numerical weather prediction models
– Derived product imagery (atmospheric stability and winds)

• Many narrow passive measurements of upwelling radiance 
along edge of molecular absorption spectral bands

• Radiance at band center is from top of atmosphere; 
radiance in window region from surface; measurements in-
between give vertical structure
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ABS Point Design Study

• Define a baseline instrument that meets NOAA 
requirements for an advanced sounder

– Detailed requirement set for industry proposals
– Trade-space analysis: define ABS architecture
– Point design: produce viable instrument design

• MIT/LL has produced two potential ABS instrument designs
– Fourier-Transform Spectrometer (FTS)

 Spectral decomposition via interferometer
– Diffraction grating Spectrometer

 Spectral decomposition via grating
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ABS Study Methodology
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ABS Instrument Requirements

• Study requirements set derived primarily from 1999 NWS 
GOES requirements document

• NWS wants finer vertical resolution and faster coverage, 
without sacrificing accuracy of retrieved profiles

NWS Meteorological Requirements
Altitude Range Observational 

Accuracy (RMS Error) 
Vertical Resolution 

 Temperature Humidity  
Surface – 500 mb ±  1.0 K ±  10% 0.3 – 0.5 km layers 
500 – 300 mb ±  1.0 K ±  10% 1 – 2 km layers 
300 – 100 mb ±  1.0 K ±  20% 1 – 2 km layers 
100 mb and above ±  1.0 K ----------- 2 – 3 km layers 
 

Derived System Engineering Requirements
(using instrument model and simulated retrievals)

• NEdNs and spectral resolutions over 
relevant wavebands as delineated in 
previous talk
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Sensor Point-Design Options

• Very aggressive performance requirements lead to complex 
instrument designs

– GOES is an operational system (24/7): risk-averse
• Requirements flow-down dictates high spectral resolution 

over wide spectral region 
• This coverage, at rapid rate, necessitates large and 

complex sensors
• IR detector arrays are central to design trade-off analysis

– Large photovoltaic HgCdTe LWIR arrays enable high 
coverage rates with many spectral bins

– LWIR Detector cutoff wavelength > ~15 µm is a technological 
challenge and requires colder operating temperatures

– Detector cooling dominates thermal budgets
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Outline

• Advanced Baseline Sounder (ABS) background
ABS trade space analysis

• Conclusion
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FTS-Based Instrument

• Signal processing (FIR decimation filters)
• Moving-mirror servo (constant velocity)
• Metrology reference wavelength (laser)

S(ν)

ν

FFT

InterferogramsSpectrum of source
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FTS Exploded View

Calibration  Plate

Steering  Flat

Primary  Mirror

Visible  Optics Bench
180 K Radiator

250 K Radiator

300 K Radiator

Cryocoolers
1 active,1 backup

200 K  IR  Optics Housing

Vacuum  Housing

65 K Optics
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FTS Optical Design (3d view)

Interferometer

IR FPAs
Visible
FPAs
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Grating-Based Instrument

Entrance slit

Spectrum of source
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ABS Grating Baseline Optical Design

SWIR
FPAs

LWIR
FPAs

LWIR
FPA

2900.0043MW2: 7.08–5.84

2900.0023SW1: 4.91–4.25

2900.0018SW2: 4.32–3.80

2900.0057MW1: 8.44–6.78

2900.0083LW3: 10.53–8.13

1450.0130LW2: 12.54–10.54

1450.0196LW1: 15.4–12.54

# 
spectral 

bins

Spectral 
resolution 

(um)

Spectral Region 
(um)

MWIR
FPAs
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300 K Radiator for 
Electronics & Beam 
Steering Motors

Optical Bench & 
250 K Radiator

3 Cryocoolers for 
Cooling FPAs to 65 K 
2 active, 1 backup

155 K IR Assembly 

Telescope 
Primary 
Mirror

Electronics Assemblies
1 active, 1 backup

Thermal 
Insulation

2 Cryocoolers for 
cooling IR-Box to 155K  
1 active, 1 backup

Steering Flat

1.2 m

0.5 m

1.5 m

Grating Exploded View

250 K Radiator for 
Cryocoolers & 
Calibration Plate
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65 K FPA

155 K Optical Bench

Thermal 
Isolator 
Supports

62 K Cold Strap

155 K Grating 
Assembly

155 K Cover

Cryocooler with 60 K 
cold finger

Cryocooler operating at 
250 K for efficiency

Mounting foot

Grating Mechanical & Thermal Concept

Visible & 
reflecting optics

250 K Optical bench & 
thermal radiator
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ABS Grating Optical Design (3d view)
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Grating design FPA Format

• FPA format
– 8 pixels per resolution element 

(ground FOV)
– Improves spectral purity
– Multiple pixels in each resolution 

element facilitate sampling the 
curvature of slit images along the 
length of the array
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Design Performance Validation

• Use sounding retrieval modeling to evaluate instrument 
performance

• “Forward” models simulate sensor measurement data from 
ensemble of various atmospheric observations

• Retrieval modeling then estimates vertical profiles of 
temperature and water vapor from measurement data

• Flexible diagnostic approach that permits exploring 
parametric sensitivities, design-space excursions, etc
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Radiometric Modeling Results
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Temperature Retrieval Performance
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Water Vapor Retrieval Performance
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Impact of Shortwave Bands on 
Temperature Retrieval
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Impact of Shortwave Bands on Water 
Vapor Retrieval
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Design Approach Comparison

• Enormous number of 
detectors
• Very challenging thermal-
mechanical & optical 
designs
• Susceptibility to 1/f noise 
(requires chopper in LW)

• Interferometer 
moving mirrors
• Metrology laser 
lifetime
• Signal processing 
electronics

Disadvantages

• Excellent radiometric 
performance
• Nominally stable 
operation once aligned
• More robust to pixel 
failures

• Relatively compact 
aft-optics
• Viable thermal-
mechanical design
• Fewer detectors

Advantages

GratingFTS
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ABS Summary

 FTS 
 

Grating Current GOES sounder 

Mass (kg) 190 
 

212 126 

Sensor Volume 0.9 m3  
1.5m x 1m x 0.6m 
 

1 m3 
1.5m x 1.2m x 0.5m 
 

0.8 m3 
1.4m x 0.8m x 0.8m 

Power (W) 235 
 

450 - 526 106 

Data Rate (Mbps) 11 
 

15 0.04 

Aperture (cm) 30 
 

30 30 

FPA Format 22 x 48  PV 626 x 192  PV 2 x 2  PC 

Detector Cooling Active, 65K 
 

Active, 65 K Passive, 94 K 

IR Channels 1540 
 

~ 1800 18   (Filter Wheel) 

Coverage ~ 7E7 km2, 60 min 
 

~ 7E7 km2, 60 min 3000 x 3000 km, 45 min 
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Conclusion

• The HES-DS (ABS) will greatly improve current GOES 
atmospheric soundings

– ~5x faster coverage, ~100x spectral resolution, improved S/N
• MIT/LL has developed two instrument point-designs 

capable of this advanced performance
– Fourier Transform Spectrometer
– Diffraction grating Spectrometer

• Point designs represent sensor “existence proofs”, not 
necessarily recommendations for actual construction/flight

– Work is particularly valuable for risk mitigation
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